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Abstract

A gap in the series of reports describing the Target-matrix paradigm for mesh optimiza-

tion is filled by describing a method for automatic construction of Target-matrices, so

that diverse applications such as shape improvement, geometric-adaptivity, solution-

adaptivity, mesh alignment, and anisotropic smoothing can be served while using only

a limited set of local quality metrics. The method makes use of the Jacobian matrices

at sample points in the initial mesh. A QR-factorization is applied to the Jacobian

matrix to isolate different initial mesh properties such as Size, Shape, and Orientation.

To construct a Target-matrix, each factor can be retained if the goal is to preserve the

property of the initial mesh, or it can be replaced by a new factor based on application

or other data if the goal is to improve the initial property. By this method, one can

rapidly implement custom-made mesh optimization algorithms in response to requests

from application groups desiring improved meshes in order to perform more accurate

and efficient simulations. An example from a Cubit application is given.

1 Introduction

This work is part of a series of papers [1]-[5] which are devoted to a description and anal-
ysis of the Target-matrix paradigm (TMP) for mesh optimization. Previous papers in the
series have focused on the overall TMP formulation, objective functions, and investigations
into local quality metrics (including barriers, convexity, derivatives, and other essential
properties). The present paper fills a critical gap, namely a description of methods for
automatically constructing the Target-matrices. Target-matrices are required in all TMP
optimization problems.

Targets play a critical role in the paradigm because they are the means by which applications
describe the particular mesh optimization problem they wish to solve. There are, perhaps,
a dozen distinct high-level applications of mesh optimization including shape improvement,
geometric-adaptivity, solution-adaptivity, mesh alignment, and anisotropic smoothing. In
TMP, each application requires a different set of Target-matrices that, along with the lo-
cal quality metric, precisely define the goal of the optimization. For example, to adapt a
mesh to the local discretization error requires a different set of target-matrices than the
problem of optimizing a mesh to increase minimum edge-length. TMP moves the burden in
mesh optimization from designing or selecting good local quality metrics to the automatic
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construction of target matrices derived from application goals. As with other methods, con-
struction of targets remains somewhat of an art, but in TMP is made more tractable for two
reasons. First, the targets are based on the Jacobian matrix of the desired optimal mesh
and thus have a simple geometric interpretation. Second, the target construction method
makes use of the initial mesh (the one to be optimized). The initial mesh is nearly always
available, and, in most other optimization methods, is ignored, even though it often contains
valuable information. Before describing methods for target construction, a brief review of
the TMP follows.

First, one defines a set of local mappings from points Ξ in the master element(s) to points
X(Ξ) in each of the elements in the mesh that is to be optimized (the latter is called the
active mesh). These mappings are most commonly those from linear finite elements, but
can be more general if needed. If the active mesh consists of only one element type, then the
mappings can all have the same form, e.g., the linear map from a square to a quadrilateral.
If the active mesh contains more than one element type (e.g., tetradehra and triangular
wedges) then more than one mapping form is required. Although the form of the mapping
may be the same from one element to another, the exact mapping on each element can differ
because the mapping depends on the coordinates of the vertices which define the particular
element. Non-linear mappings are also allowed, for example, in the case of high-order finite
elements.

In addition to the mappings, TMP requires that a set of sample points within the master
element(s) be selected. Let the sample points within the master element be denoted by
{Ξk}, k = 0, 1, . . . ,K − 1. The corresponding points in the active mesh are {Xk} where
Xk = X(Ξk). Typically, the sample points are located at the corners of the master element
if the element is linear, otherwise they may also be located at mid-edges, mid-faces, and/or
mid-elements. TMP thus requires that, in the formulation stage of the optimization, one
define a set of mappings and sample points over all the elements of the mesh. This is not as
daunting as it sounds because the mappings are usually of the same form for each element in
the mesh (unless it contains more than one element type) and thus there is only one master
element that is used for every element in the active mesh. The sample points are usually
located at the corners of the master element if the mapping is linear.

The mappings are required to be differentiable so that their Jacobian matrix ∂X/∂Ξ exists
at the sample points. For short-hand, we denote this Jacobian matrix by the symbol A,
which refers to the Jacobian of the map from the master element to an element in the active

mesh. The Jacobian matrix depends upon the vertex coordinates within each element and
thus varies from one element to the next; this dependence is suppressed in the notation
used above. Furthermore, the Jacobian matrix varies from point to point within the master
element, as a function of Ξ. We denote by Ak the Jacobian matrix evaluated at sample
point k; thus Ak = A(Ξk).

There is yet another requirement in TMP, namely the creation of a set of Target-matrices;
the requirement is more difficult to achieve, but gives TMP considerable power and flexibil-
ity. For every sample point k in the mesh, the target paradigm requires two matrices: the
Jacobian matrix Ak derived from the active mesh and the Target (or reference-Jacobian)-
matrix Wk. The set matrices {Ak} is readily computed from the active mesh, while the
set {Wk} must be constructed prior to the optimization. This construction is the subject
of the present paper. The purpose of the Target-matrices is to quantitatively describe the
optimal mesh Jacobians on the set of sample points. Since every sample point can have
a different Target-matrix, this information is very detailed and difficult to determine from
scratch. Fortunately, there are mitigating factors (to be described later) which can be taken
advantage of to find suitable target sets.

For clarity, the sample point indices are often suppressed in much of the remainder of this
presentation. Let A and W at some sample point be defined. Because the construction of
targets is under our control, we can assume that, for every target, det(W ) 6= 0 and thus W−1



exists. The weighted Jacobian matrix T , defined by T = AW−1, is heavily used in TMP
because, if the target matrix W has units of length (as does A), then T is non-dimensional
and provides a convenient scaling of A.

Before getting into the details of how the Targets are created, let us complete the description
of TMP. Let Md be the set of d × d matrices with real numbers as elements. In mesh
optimization the matrices A, W , and T are either 2 × 2 or 3 × 3, reflecting the dimension
of the elements in the mesh.1. A local quality metric µ, which is a function from Md to
the non-negative numbers, is chosen from a set of quality metrics given in previous TMP
papers; for example, the Size+Shape+Orientation metric µ(T ) = |T −I|2 is frequently used,
as are Shape and Size+Shape metrics. Note that both A and T depend on the coordinates
of the vertices within each element. An objective function, typically of the form

F =
1

N

∑

e

∑

k

µ(T e
k )

where k is the sample point index within an element, e is the element index, and N is the
total number of sample points in the mesh, is minimized as a function of the coordinates
of the free vertices in the mesh to find the optimal mesh. The optimization is usually con-
strained by fixing some or all of the boundary vertices.

The above optimization problem, applied to most meshes, cannot usually be solved without
resorting to iterative numerical methods. For the most part, standard optimization meth-
ods are used to solve the TMP optimization problem. Iterative methods require that we
begin with an initial mesh. Once the mappings and sample points in TMP are defined, we
can readily compute the Jacobian matrix Ainit on the initial mesh. This matrix plays an
important role, not only in the initialization of the optimization problem, but (as we shall
see) in the construction of the target-matrices.

2 Two Simple Ways to Construct the Target-Matrices

So far, we have mentioned both the master and active mesh elements and the Jacobian
matrix A which relates the two. If one were, in addition, to define a reference element which
specifies the target (or optimal) element in the mesh, then the picture in Figure 1 shows the
relation between three different maps and their corresponding Jacobian matrices A, W , and
T . The target matrix is thus the Jacobian of the map between the master and reference ele-
ments, while the weighted Jacobian matrix is the Jacobian of the map between the reference
element and the physical element. The three maps have the same mathematical form (e.g.,
the bilinear map for quadrilateral elements), but of course will differ otherwise because the
vertex coordinates of the logical, reference, and physical elements are not generally the same.

W

Master Element Reference Element

AW

A

Active Element

-1

Figure 1: Relation between the Master, Reference, and Active Elements

1The mesh is assumed to be confined to either R2 or to R3, i.e., either a planar or a volume mesh; the
surface case is reserved for a later paper



The figure suggests two relatively simple methods for constructing the set of target matrices.
In the first method, the reference element is held fixed over all the elements in the mesh.
In this case, the reference element represents the ideal element for a given element-type.
Thus, for example, if the mesh to be optimized consists of triangular elements, then the
reference element can be taken to be an equilateral triangle, whereas if the mesh consists
of quadrilaterals, then the reference element can be the square. These reference elements
are useful if the goal of the optimization is to create an optimal mesh consisting of all-
equilateral elements. Given the ideal reference element, one can determine the target W
simply by evaluating the Jacobian of the map from the master to the reference element at
each of the sample points (see [6] for example). In this approach, the ideal targets are used
in conjunction with a Shape metric such as condition number, which is size and orientation
invariant, so that the equilateral reference element can have arbitrary size and orientation.2

Clearly, this particular method of constructing target-matrices, while simple, effective, and
sometimes appropriate for the application, can only create meshes whose element shapes
are close to the ideal shape. Other methods of target construction are needed if the goal of
the optimization is different.

In the second method of target construction, which is referred to as the reference mesh

method, the reference element in the figure becomes an element from a reference mesh that
is topologically-identical to the active mesh. Given the reference mesh, the sample points,
and the same element mapping type(s) used to compute A from the active mesh, let the
Jacobian matrices of the reference mesh be Aref ; this is readily computed using the vertex
coordinates of the reference mesh. The target is then taken to be W = Aref . Choosing the
target matrix in this manner implies that the reference mesh has good quality and is thus
suitable as the target of the optimization. The challenge in this method, of course, is to
obtain a suitable reference mesh. An example is found in the ’deforming geometry’ problem
in which one is asked to update the mesh as the domain on which it is defined changes shape
(often vs. time). In this problem, the mesh on the geometry before it is deformed is used as
the reference mesh and the metric |T − I|2 may be suitable. At a particular time t during
the deformation T = A(t)(Aref )−1. The optimization will drive the metric towards zero so
that T ≈ I and so A(t) ≈ Aref . In that case, the optimal mesh consists of elements that
are close (in a least-squares sense) to the reference mesh. Details of this method are given
in [7].

Another example of using a reference mesh occurs in the mesh copy/morph problem in
which one seeks to improve a mesh on one geometry when given a good quality mesh on
a topologically similar geometry. For example, many geometries in engineering are quasi-
cylindrical. Given an imperfect mesh on such a geometry, one may be able to improve it
using the reference mesh method. In this approach, one first creates a topologically-identical
mesh of good quality using a exactly cylindrical geometry (perhaps by using the cylindrical
coordinates transformation or by using a sweeping algorithm). This latter mesh is then used
as the reference mesh in optimizing the mesh on the quasi-cylindrical geometry.

A special case of the reference mesh method results when one chooses the initial mesh (which
is used to begin the iterative solution method) as the reference mesh. Then W = Ainit and
T = A(Ainit)

−1. Thus, at the beginning of the optimization Tinit = Ainit(Ainit)
−1 = I.

But T = I is a global minimizer of most of the TMP quality metrics, so the optimal mesh is
simply the initial mesh. In most cases this is not useful, although there are some exceptions
(see [8], for example).

The two simple methods described above for constructing target matrices enable optimiza-
tion procedures for creating meshes with all elements close to an ideal element or to create a
good quality mesh on one geometry given a good quality (topologically-identical) mesh on a

2It is important to understand that to create a mesh with equilateral elements, one not only has to create
the proper reference element, but also must use the proper local quality metric. For example, if one used
the equilateral reference element with the Size+Shape+Orientation metric, the optimal mesh would have
local orientations all the same. The result would most likely be an inverted mesh.



similar geometry. To meet additional mesh optimization goals requires a more sophisticated
approach to target construction. In particular, we shall move away from the requirement
of having to provide a set of reference elements like those in Figure 1. Instead, the targets
will be constructed directly from application data, including the initial mesh. As before,
one Target-matrix will be constructed for each sample point within the mesh. This set of
matrices will not necessarily be self-consistent. For example, it only takes two consistent
Jacobian matrices to uniquely determine (up to translation) the vertex coordinates of a
linear quadrilateral. If we create four independent Jacobian matrices, the quadrilateral ref-
erence element may not actually exist. However, consistency is not required because the
least-squares formulation of the objective function will reconcile any inconsistencies which
exist between the targets within elements and between different elements.3

As we shall see, the initial mesh can be useful in constructing target matrices if the qual-
ity of the initial mesh is already partly acceptable.4 For example, perhaps the size of the
elements in the initial mesh is acceptable while the shape leaves something to be desired.
We would thus want to construct target matrices whose size corresponds to the sizes in the
initial mesh, but whose shape is given by the ideal element shape. Somewhat surprisingly,
this can in fact be accomplished using a certain matrix factorization which we now describe.

3 The Λ V Q ∆ Factorization

The matrix factorization is related to the well-known ’QR-decomposition’ in which a matrix
is factored as the product of an orthogonal and an upper triangular matrix. When the ma-
trix that is factored is the 2 × 2 or 3 × 3 Jacobian matrix A, the factorization can be given
explicitly, and the factors have identifiable geometric meanings. In this section attention is
restricted to the 2×2 case in order to convey the basic results. Section 5 considers the 3×3
case, while the 3 × 2 surface case is deferred until a later work.

Let M2 be the set of all 2 × 2 matrices with real elements. Also define M ∗
2 to be the set of

all matrices in M2 that are non-singular. Consider A2×2, with the columns of A given by
the vectors a1 and a2, and write A = [a1, a2]. If A ∈M∗

2 , then α ≡ det(A) 6= 0 and, further,
the lengths |a1| and |a2| of the two column vectors are non-zero. When A is the Jacobian
matrix, the two column vectors correspond to the two tangent vectors of the mapping (at a
given sample point), a1 · a2 to the angle between the vectors, and det(A) to the area of the
parallelogram defined by the vectors.

The factorization of interest requires that A ∈M ∗
2 . In the theory to follow we shall assume

that this is the case.5 There are actually three factorizations of interest. The factorizations
of A ∈M∗

2 that we are interested in are given explicitly by

A = V U (1)

= ΛV S (2)

= ΛV Q∆ (3)

where

Λ(A) =
√

|α| (4)

3This is true for the previously-described ideal reference element case, too, since consistency of Jacobians
between ideal elements is not guaranteed.

4Even if it is not, the initial mesh can provide a rough idea of the local Sizes within the mesh. This is
important because the Size+Shape metric, for example, requires exact sizes, not relative sizes.

5In practice, to deal with singular Jacobian matrices arising from the initial mesh we shall take the
pragmatic approach of judiciously applying a sufficiently small random perturbation to one or more vertices
within the element that gave rise to the singular matrix. The result almost always will be a non-singular
matrix that is close to the original singular matrix but to which the factorization applies.
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Figure 2: The vectors a1 = r1 (cos θ, sin θ) and a2 = r2 (cos(θ + φ), sin(θ + φ)).

is a scalar, and the remaining factors are the 2 × 2 matrices:

V (A) =

[

a1

|a1|
,
−(a1 · a2) a1 + |a1|2 a2

|α| |a1|

]

(5)

Q(A) =

√

|a1| |a2|
|α|

(

1 a1·a2

|a1| |a2|
0 |α|

|a1| |a2|

)

(6)

∆(A) =
1

√

|a1| |a2|

(

|a1| 0
0 |a2|

)

(7)

S(A) =
1

√

|α|

(

|a1| a1·a2

|a1|
0 |α|

|a1|

)

(8)

U(A) =

(

|a1| a1·a2

|a1|
0 |α|

|a1|

)

(9)

The explicit factorizations show that, given A non-singular, the 2 × 2 matrices V , Q, ∆,
S = Q∆, and U = ΛS are determined, as is the scalar Λ. This factorization of the mesh Ja-
cobian was first mentioned in [9]. Note that the matrix factors themselves are non-singular.

The factors of A have recognizable geometric meanings. This is more easily seen if we
replace the column vectors a1 and a2 in A = [a1, a2] with the geometric quantities r1 = |a1|,
r2 = |a2|, θ, and φ shown in Figure 2. Then φ is the angle between the two column vectors
and θ is the angle between the first column vector and the x-axis. Let the Jacobian-matrix
thus be given by

A =

(

r1 cos θ r2 cos(θ + φ)
r1 sin θ r2 sin(θ + φ)

)

Then det(A) = r1 r2 sinφ. The factorization thus exists provided r1 6= 0, r2 6= 0, φ 6= 0, and
φ 6= π. Moreover, the conditions r1 > 0, r2 > 0, and 0 < φ < π ensure that A has a positive
determinant and thus V will be a rotation matrix, rather than a flip.

Applying the factorization formulas to the previous form of A, and assuming det(A) > 0,
we obtain

Λ =
√

r1 r2 sinφ



V =

(

cos θ − sin θ
sin θ cos θ

)

Q =
1√
sinφ

(

1 cosφ
0 sinφ

)

∆ =





√

r1

r2

0

0
√

r2

r1





S =
1√

r1 r2 sinφ

(

r1 r2 cosφ
0 r2 sinφ

)

U =

(

r1 r2 cosφ
0 r2 sinφ

)

From this factorization, we see that Λ is the square root of the local area of the mapping.
Λ ≥ 0, is related to area and has units of length; we refer to Λ as the local Size parameter.
The matrix V is dimensionless and is a rotation, i.e., det(V ) = 1 and V tV = I.6 Because
the first column of V is the unit vector in the direction a1, we see that V is related to
the local Orientation of the map with respect to the coordinate system. The matrix Q is
dimensionless, upper triangular, has unit determinant, equal-length columns, and positive
diagonal elements. Because Q can be written in terms of the sine and cosine of the angle
between the vectors a1 and a2, we see that it is related to local angle or Skew between the
tangents. The matrix ∆ is dimensionless, diagonal, with positive diagonal elements, and
unit determinant. Because the diagonal elements of ∆ are ratios of the lengths of the two
tangent vectors, we see that it is related to local aspect ratio. The matrix S is dimensionless,
upper triangular, has positive diagonal entries, and unit determinant. As the product of
skew and aspect ratio matrices, S is related to the local shape. The matrix U has units of
length, is upper triangular, has positive diagonal entries, and its determinant is |α|. As the
product of Size and Shape quantities, we see that U is related to local Shape+Size.

To understand how this factorization can be used in target construction, recall the example
given at the end of the previous section, in which the initial mesh had good Size quality, but
poor Shape quality. The factorization shows that we can factor the Jacobian matrices be-
longing to the initial mesh into two matrices ΛV and S such that Ainit = (Λinit Vinit)Sinit.
To construct an appropriate Target matrix, we discard Sinit and replace it with Snew, the
latter representing the desired local Shape. The Target-matrix is then W = Λinit Vinit Snew.
A key question is: under what conditions is S(W ) = Snew, i.e., how can one construct Snew

such that the Shape implied by the Target is the shape specified by Snew?

To investigate this question, define the following matrix sets in M ∗
2 :

• V is the set of all orthogonal matrices, R is the set of all rotations, F is the set of all
flips. The union of the latter two is V,

• U is the set of all upper triangular matrices with positive diagonal elements,

• S is the set of all matrices in U having unit determinant,

• Q is the set of all matrices in S having equal length columns,

• D is the set of all diagonal matrices in S

One can see by inspection of (4)-(9) that V (A) ∈ V, U(A) ∈ U , S(A) ∈ S, Q(A) ∈ Q, and
∆(A) ∈ D.

Proposition 1.
First, det(A) > 0 if and only if V (A) is a rotation. Second, det(A) < 0 if and only if V (A)
is a flip.
Proof.

6Our choice of r1, r2, and φ eliminated the possibility that V could be a flip.



From (1) we see that α = det(A) = det(V ) det(U) = det(V ) |α|. Thus, if det(A) > 0, we
must have det(V ) = 1 and, because V is either a flip or a rotation, V must be a rotation.
If, on the other hand, V is a rotation, then det(V ) = 1, and so det(A) = |α| > 0. The proof
of the second statement is similar. §

Given A ∈ M∗
2 , the matrices V , Q, ∆, etc. are uniquely determined. For the purpose of

target construction, the key question is the reverse statement: given matrices V ′, U ′, under
what conditions is V (V ′U ′) = V ′, U(V ′U ′) = U ′?

Proposition 2.
If V ′ ∈ V, U ′ ∈ U , and A′ = V ′ U ′, then V (A′) = V ′ and U(A′) = U ′.
Proof

The proof for V ′ ∈ R is provided here, while the case V ′ ∈ F is similar. Note first that
det(U ′) > 0 since the determinant of an upper triangular matrix is the product of the
diagonal entries and these are assumed positive. Since det(V ′) = 1, we have det(A′) =
det(U ′) > 0. Thus A′ ∈ M∗

2 and the factorization A′ = V (A′)U(A′) exists. Therefore, we
have

V ′ U ′ = V (A′)U(A′)

From this, det(V ′) det(U ′) = det[V (A′)] det[U(A′)]. But det(V ′) = 1, det(U ′) > 0, and
det[U(A′)] = |det(A′)| > 0. Therefore, det[V (A′)] > 0, and so we must have det[V (A′)] = 1
and V (A′) is a rotation. Since both V ′ and V (A′) are rotations, the product (V ′)tV (A′) is
also a rotation. Hence U ′ is a rotation matrix times U(A′). The fact that both of the latter
are upper triangular with positive diagonal entries forces (V ′)tV (A′) = I. That being the
case, one must have V (A′) = V ′ and U(A′) = U ′. §

Proposition 2 shows that the conditions V ′ ∈ V and U ′ ∈ U are sufficient to guarantee the
stated result. It is easy to see that they are necessary as well. Proposition 2 says, in effect,
that the factorization into matrices belonging to the defined sets is unique.

Proposition 3.
Suppose Λ′ > 0, V ′ ∈ V, and S′ ∈ S. If A′ = Λ′ V ′ S′, then Λ(A′) = Λ′, V (A′) = V ′ and
S(A′) = S′.
Proof.
The proof for V ′ ∈ R is provided, while the case V ′ ∈ F is similar. Note first that,
det(A′) = (Λ′)2 det(V ′) det(S′). Because V ′ ∈ V, det(V ′) = 1. In addition, S′ ∈ S gives
det(S′) = 1. Therefore, det(A′) = (Λ′)2 > 0. In turn, this means A′ ∈ M∗

2 and so the the
factorization A′ = Λ(A′)V (A′)S(A′) exists. Thus, we have

Λ′ V ′ S′ = Λ(A′)V (A′)S(A′)

By definition, Λ(A′)S(A′) = U(A′). Further, if we let U ′ = Λ′ S′, we see that U ′ is upper
triangular with positive diagonal entries, so U ′ ∈ U . Thus, A′ = V ′ U ′ and Proposition 2
can be applied to show V ′ = V (A′) and U ′ = U(A′). The latter gives

Λ′ S′ = Λ(A′)S(A′)

Taking the determinant of both sides of the expression and equating, we find that, [Λ′]2 =
[Λ(A′)]2. But since both of these scalars are positive, that means Λ′ = Λ(A′). Then,
S′ = S(A′) is immediate. §

The assumptions in Proposition 3 are both sufficient and necessary to guarantee the stated
results.

Proposition 4.
Suppose Λ′ > 0, V ′ ∈ V, Q′ ∈ Q, and ∆′ ∈ D. If A′ = Λ′ V ′Q′ ∆′, then Λ(A′) = Λ′,
V (A′) = V ′, Q(A′) = Q′, and ∆(A′) = ∆′.
Proof.



The proof for V ′ ∈ R is provided, while the case V ′ ∈ F is similar. We have det(A′) = (Λ′)2

because V ′ ∈ V, Q′ ∈ Q, and ∆′ ∈ D requires that these matrices have unit determinant.
Thus A′ is non-singular and the factorization exists, i.e., A′ = Λ(A′)V (A′)Q(A′)D(A′).
Therefore

Λ′ V ′Q′ ∆′ = Λ(A′)V (A′)Q(A′)∆(A′)

By definition, Q(A′)∆(A′) = S(A′). Further, if we let S′ = Q′ ∆′, we see that S′ ∈ S.
Thus, A′ = Λ′ V ′ S′ and Proposition 3 can be applied to show Λ(A′) = Λ′, V (A′) = V ′, and
S(A′) = S′. The latter gives

Q′ ∆′ = Q(A′)∆(A′)

Multiplying the matrices on each side of this relation and equating the elements reveals that
Q′ = Q(A′) diag(r, 1/r) for some r > 0. But since the columns of Q′ have equal length, so
must the columns of the product Q(A′) diag(r, 1/r). This forces r = 1, and thus diag(r, 1/r)
is the identity matrix. Therefore, Q(A′) = Q′. It is then immediate that ∆(A′) = ∆′. §

The assumptions in Proposition 4 are both sufficient and necessary to guarantee the stated
results.

Corollary.
Let Gk ∈M∗

2 with k = 1, 2, 3, 4, and let G = Λ(G1)V (G2)Q(G3)∆(G4). Then

Λ(G) = Λ(G1)

V (G) = V (G2)

Q(G) = Q(G3)

∆(G) = ∆(G4)

Proof.
From prior observations, Λ(G1) > 0, V (G2) ∈ V, Q(G3) ∈ Q, and ∆(G4) ∈ D. Applying
Proposition 4, we have the stated result. §

Similarly corollaries may be proved using Propositions 2 and 3. For example, if G1 ∈ M∗
2 ,

G2 ∈M∗
2 , and G = V (G1)U(G2), then V (G) = V (G1) and U(G) = U(G2).

4 Target-matrix Construction Using the 2 × 2 Factor-
ization

The propositions in the previous section justify the following approach to Target-matrix
construction. Given an initial mesh, a set of matrices Ainit can be created from the under-
lying mappings. If Ainit ∈ M∗

2 , then from the expressions (4)-(9), initial values Vinit =
V (Ainit), Uinit = U(Ainit), etc., can be found such that

Ainit = Vinit Uinit

= Λinit Vinit Sinit

= Λinit VinitQinit ∆init

To construct Target-matrices from these factorizations, one or more of these initial matrix
factors can be replaced with a new matrix. For example, if we set W = Λinit Vinit Snew,
then according to the propositions, Λ(W ) = Λinit, V (W ) = Vinit, and S(W ) = Snew, pro-
vided Snew ∈ S. If this target were used along with the local metric |T − I|2, optimization
should produce an optimal mesh whose shape quality is now close to Snew, while the Size
and Orientation qualities would remain close to those of the initial mesh.



It is clear that many different combinations of new and initial matrices can be created and
combined to form a target matrix. For the moment, let us leave aside the question of what
combinations exist, and which are important, to focus instead on how one might create
useful λnew, Vnew, Qnew, ∆new, Snew, and Unew matrices.

The initial matrices Vinit, etc., will in general vary from one sample point in the mesh to
another. To realize the full potential of the Target-matrix paradigm, the new matrices Vnew,
etc., must also be allowed to vary over the sample points. Let (Vnew)k denote the new Ori-
entation matrix at sample point k, and use similar notation for the other matrices.

The following subsections provide high-level methods for creating new matrices that belong
to the proper sets V, etc., so that the Propositions of the previous section hold. Notably,
the matrix factors are created from data available to the application. This data, of course,
varies from one application to the next. Most prior methods of mesh optimization do not
use the data to be described below, at least not in such a systematic fashion. Thus, tar-
get construction based on this seldom-used data potentially permits the creation of better
optimal meshes. Of course, Target-matrix creation is an art because the ingenuity of the
creator plays an important role in the quality of the results.

4.1 The Size Factor (Λnew)k

Recall that the Size factor Λ(A) =
√

|α| is related to the local area of the map. Clearly,
if the application desires a relatively large element in some location, then Λ should be rel-
atively large. The area, in turn, depends on the lengths and included angle between the
local tangent vectors. If the angle φ is controlled via the Q-matrix, so that sinφ ≈ 1, then
Λ roughly controls the geometric average of the lengths of the tangents. These, in turn, are
related to the lengths of the edges in an element.

A generic model for calculating the Size factor over the set of sample points in the mesh
assumes that we are given application data such that a set of positive scalars {fk} defined
at the sample points can be computed. If there are K sample points in the mesh, let
f̄ = 1

K

∑

k fk be the average value over the set of values. Further, given (Λinit)k as the
value of Λ at each sample point of the initial mesh, let Λ̄ = 1

K (Λinit)k be the average Size
in the initial mesh. A properly-scaled model for a new Size factor is

(Λnew)k =

(

fk

f̄

)

Λ̄ (10)

This model will tend to create Sizes in the optimal mesh that are proportional to fk. Note
that this scaling is such that 1

K

∑

k(Λnew)k = Λ̄, so that the average Λ in the optimal mesh
is the same as in the initial mesh. This property helps ensure the mesh remains of good
quality. The requirement that f be a positive function comes from the fact that we need Λ
positive in order for the factorization Propositions to hold. When fk ≡ 1 over all the sample
points, we have the special case (Λnew)k = Λ̄, which corresponds to the goal of creating a
mesh with equal Size everywhere.7

If Size is important to control while optimizing the mesh, then of course, one must not
use a size-invariant local metric such as the Shape metric. The Size+Shape metric or the
Size+Shape+Orientation metrics are logical candidates.

Applications may have available the following data which can be used to create useful {fk}:

• a posteriori discretization error estimates or error indicator data,

• scalars derived from physically-meaningful scalar fields such as conductivity, perme-
ability, depth contours, etc.,

7Another special case is obtained by letting fk = (Λinit)k, which gives (Λnew)k = (Λinit)k.



• determinants of symmetric positive definite matrices such as a the solution Hessian,
the thermal conductivity, the Permeability tensor, etc.,

• the norm of the solution gradient, or

• surface curvature.

It is evident from these examples that a wide variety of application-specific Size-adapted
optimal meshes can potentially be created.

4.2 The Orientation Factor (Vnew)k

Recall that the Orientation matrix V is related to the angle θ that the first column of A
makes with the x-axis. If the angle φ is controlled by the Q-matrix, then V additionally
controls the local orientation of the tangent vectors to the map with respect to the global
coordinate system.

A generic model for calculating a new Orientation matrix to be used in the Target assumes
that we are given application data from which a set of non-zero vectors {(uk, vk)} defined at
the sample points can be computed. Let cos θk = uk/

√

u2
k + v2

k and sin θk = vk/
√

u2
k + v2

k,
so that

(Vnew)k =
1

√

u2
k + v2

k

(

uk −vk

vk uk

)

(11)

With this construction, Vnew is a rotation, and the optimal mesh should tend to align the
first column of the Jacobian matrix of the optimized mesh with the vector field at each
sample point.

In some cases, one may wish to align the second column of the Jacobian matrix with the
vector field. To do so, we propose

(Vnew)k =
1

√

u2
k + v2

k

(

vk uk

−uk vk

)

(12)

If Orientation is important to control while optimizing the mesh, then of course, one must
not use an orientation-invariant local metric such as the Shape or Size+Shape metrics. The
Size+Shape+Orientation metric is the proper choice.

Applications may have available, among other possibilities, the following data which can be
used to create useful {(uk, vk)}: magnetic fields, fluid velocity vectors, solution gradients,
fluxes, or eigenvectors of symmetric tensor fields. It is evident from these examples that a
wide variety of application-specific Orientation-adapted optimal meshes can potentially be
created.

This approach was originally suggested in [11], prior to the TMP.

It is important to note that, to use this approach effectively requires knowledge of the way in
which the vertices of each mesh element are labeled. An example is given in Figure 3. In the
terminology of [5], V is not a label-invariant quantity, whereas Λ is. The issue is not a major
difficulty for structured meshes since the labeling is often consistent from one element to
the next, but can be troublesome on unstructured meshes because an incorrect assumption
on the labeling could result in a tangled mesh. Moreover, in practice, orientation-control
seems to be less commonly wanted with unstructured meshes because such meshes do not
have global tangent lines.
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Figure 3: A sample point located at vertex 0 of the element shown has the first column of A
equal to e1 assuming the labeling shown. However, if the labeling is cyclically permuted, so
that 0123 becomes 3012, then the sample point at vertex 0 has the first column of A equal
to e2. Thus, depending on the labeling, either e1 or e2 would align with v.

4.3 The Skew Factor (Qnew)k

Recall that the Skew-matrix is related to the angle φ between the two tangent vectors of
the map. Assume that we are given application data such that the set of angles {φk} (with
sinφk > 0) over all sample points can be computed. The generic model for calculating a
new Skew-matrix is based directly on the geometric definition of Q given in the previous
section:

(Qnew)k =
1√

sinφk

(

1 cosφk

0 sinφk

)

(13)

The condition on sinφk helps meet the conditions for the factorization Propositions to hold.

In practice, many applications may not be able to supply meaningful data from which we
can calculate the set {φk}, varying over the sample points. One remedy is simply to set
φk to a constant angle which is related to the angle found in the ideal element type. For
example, the ideal quadrilateral element has φ = π/2, which results in (Qnew)k = I. The
ideal triangle element has φ = π/3, giving

(Qnew)k =
1√

2 4
√

3

(

2 1

0
√

3

)

(14)

The use of constant Q matrices in the Target is appropriate if a goal of the optimization is
to create a mesh whose local tangents all include the ideal angle.

None of the local metrics in the Target-matrix paradigm are invariant to the skew-angle, so
Qnew can be used with any metric.

4.4 The Aspect Ratio Factor (∆new)k

Recall that the ∆-matrix is related to the local tangent aspect ratio
√

r1

r2

. A generic model

for calculating the Aspect Ratio matrix over the set of sample points in the mesh assumes
that we are given application data such that a set of positive scalars {ρk} defined at the



sample points can be computed. Then let

(∆new)k =

( √
ρk 0
0 1/

√
ρk

)

(15)

An important special case occurs with ρk ≡ 1 for all k. Then (∆new)k = I, which is appro-
priate if one desires that the optimal mesh be isotropic.

None of the local metrics in the Target-matrix paradigm are invariant to aspect ratio, so
∆new can be used with any metric.

Applications may have available, among other possibilities, the following data which can be
used to create useful values of ρk: the eigenvalues of a symmetric positive definite matrix
such as the Hessian, the Curvature, or the Diffusivity, a priori knowledge such as the aspect
ratio of the geometric domain or the aspect ratio of a boundary layer, or pairs of vectors
such as the electric and magnetic field vectors.

As with Orientation, Aspect-Ratio is not label-invariant. Thus, in Figure 3, the aspect-ratio
at vertex 0 is r1/r2 is e1/e2 when the labeling of the element vertices is as shown, whereas,
the aspect-ratio at vertex 0 becomes e2/e1 under the label permutation 0123 → 3012. There-
fore, to use this approach to aspect-ratio effectively requires specific knowledge of the way
in which the vertices of each mesh element is labeled.

4.5 The Shape and Shape+Size Factors (Snew)k, (Unew)k

Recall that the Shape matrix is related to both angle and aspect ratio. A generic model
for calculating a new Shape matrix is to take advantage of the relation Snew = Qnew∆new.
Therefore, a new Shape matrix is found by first calculating new Skew and Aspect Ratio
matrices according to the previous two subsections, and then multiplying them together.

The same approach can be used to calculate a new Size+Shape matrix Unew = ΛnewSnew.

4.6 Creating New Factors by Multiplying Initial Factors

In the preceding subsections, we presented an approach to Target construction in which new

factors, created from application data, are substituted for initial factors. The initial factors
are thus discarded. New factors can also be created by modification of the initial factors.
This may be a more convenient way to construct Targets in certain situations.

The basic idea is the following: let λk > 0, Vk ∈ V, Dk ∈ D be calculated from data supplied
by the application, for all k. Then define new factors in terms of the initial factors as follows:

(Λnew)k = λk (Λinit)k

(Vnew)k = Vk (Vinit)k

(∆new)k = (∆init)k Dk

where Λinit = Λ(Ainit), Vinit = V (Ainit), and ∆init = ∆(Ainit). These operations are
possible because the sets V and D are closed under multiplication.8 The new factors then
replace the initial factors, as before. For example, if one desired W = Λinit Vnew Qnew ∆init,
then this method of creating new factors gives

Wk = (Λinit)k (Vnew)k (Qnew)k (∆init)k

= (Λinit)k Vk (Vinit)k (Qnew)k (∆init)k

8The sets S and U are also closed, so a similar approach can be taken to create Snew or Unew from Sinit

or Uinit. However, the set Q is not closed under multiplication, so this approach cannot be taken with the
Skew factor.



with V (Wk) = Vk (Vinit)k. One can also create a new Jacobian matrix from the initial

Jacobian matrix by letting

(Anew)k = λk Vk (Ainit)k Dk

This would be used in the Target Wk = (Anew)k. The construction can be written

(Anew)k = [λk (Λinit)k] [Vk (Vinit)k] (Qinit)k [(∆init)k Dk]

Because the sets are closed, the Propositions allow us to conclude that

Λ[(Anew)k] = λk (Λinit)k

V [(Anew)k] = Vk (Vinit)k

∆[(Anew)k] = (∆init)k Dk

Usually, Vk will be a rotation, but if, at a particular sample point, (Vinit)k is a flip, then
perhaps choosing Vk to be a flip might be effective in eliminating an inverted element. In
fact, this choice is necessary since we require that all Target-matrices have positive deter-
minant.

If a reference mesh is available, then one could use λk = Λ(Aref ), Vk = V (Aref ), and/or
Dk = ∆(Aref ).

It is unclear if this approach to creating new factors by modifying the initial factors is useful
in practice. In a later section, we see that cases involving one or more of λk, Vk, or Dk being
constant could be of use in mesh Morphing or Copying.

4.7 Closing Remarks on the Factorization Approach to Target Con-
struction

In summary, given appropriate application data, the generic models of the previous subsec-
tions can be used to compute new matrix factors to be used in combination with the initial

matrix factors to construct Target-matrices over the set of sample points such that a particu-
lar mesh optimization goal is met. A Target combination such asW = Λinit Vnew Qnew ∆init,
for example, when used with the Size+Shape+Orientation local metric, essentially says that
the goal is to preserve the initial mesh qualities related to Size and Aspect Ratio, while im-

proving the qualities related to Orientation and Skew. Thus, in TMP, one can, as a goal,
both preserve and improve various mesh qualities via optimization.

As noted Section Two, it is not necessary that the set of Target-matrices constructed from
the factorization method be consistent from one sample point to another because the least-
squares objective function will reconcile the inconsistencies. However, the more consistent
the set of Targets is, the more likely the optimal mesh will satisfy the optimization goal
implied by the targets.

Two additional methods for creating new matrix factors should be mentioned.

First, if a reference mesh is available, one can compute the factorization Aref = Λref Vref Qref ∆ref .
Then one can let, for example, Λnew = Λref , Vnew = Vref , etc. Hence, one can have Target-
matrices with combinations such as W = Λref Vinit Snew in which the target is composed of
information from the reference mesh, the initial mesh, and from application-specific data.
This example would make sense if the reference mesh has good Size quality, but poor Shape
quality.

Second, a similar approach can be taken that involves a two-stage optimization procedure
in which the optimal mesh from the first stage is used to create targets for the second stage.
For example, an optimal mesh could first be created by successively optimizing local patches



from the initial mesh using a Shape metric with target based on the ideal element shape.
After each local patch has been optimized one calculates (Aopt)k. The optimization contin-
ues to the next local patch, but not before restoring the coordinates of the center vertex
from the optimized local patch to its initial position. This is followed by a subsequent global
optimization, again beginning with the initial mesh, but using the Size+Shape+Orientation
metric, and the target W = Aopt to create a mesh that is similar to the initial mesh,
but with better shape quality. This method was proposed in the ALE rezone paper [12].
Other possibilities involving factorization of the Jacobian matrix of optimal mesh resulting
from the first optimization stage to obtain new matrix factors that can be inserted into the
second-stage target-matrices may be useful.

In principle, there is nothing to prevent one from varying the combination of initial and
new matrix factors from one sample point to the next. For example, the sample points
in one subset of the mesh elements might use W = Ainit, while another subset might use
W = Anew. Such a possibility raises the issue of Target-matrix smoothness. Numerical
experiments in the past suggest that if the Targets do not vary smoothly over the set of
sample points, the optimal mesh will not be smooth.9 A combination of initial and new tar-
gets is likely to be non-smooth unless carefully done, so this possibility may be unattractive
for that reason. The same can be said concerning the matrix factors, i.e., they should vary
smoothly over the sample points if a smooth optimal mesh is wanted.

5 Extension of the Factorization to Three Dimensions

Sections 3 and 4 focused on 2× 2 matrices. In this section the results are extended to 3× 3
matrices, which are associated with volume mesh elements.

Let M3 be the set of all 3 × 3 matrices with real elements, and let M ∗
3 be the set of non-

singular matrices in M3. Consider A3×3, with the columns of A given by the vectors a1, a2,
and a3, and write A = [a1, a2, a3]. If A ∈M∗

3 , then α ≡ det(A) 6= 0 and thus the quantities
|a1|, |a2|, |a3|, and |a1 ×a2| are non-zero. When A is the Jacobian matrix, the three column
vectors correspond to the three tangent vectors of the mapping (at the given sample point).

For A ∈M∗
3 , the factorizations (1)-(3) still hold, provided

Λ(A) = |α|1/3 (16)

V (A) =

(

a1

|a1|
,
−(a1 · a2)a1 + |a1|2a2

|a1||a1 × a2|
,
α(a1 × a2)

|α||a1 × a2|

)

(17)

Q(A) = 3

√

|a1||a2||a3|
|α|







1 a1·a2

|a1||a2|
a1·a3

|a1||a3|
0 |a1×a2|

|a1||a2|
(a1×a2)·(a1×a3)
|a1×a2||a1||a3|

0 0 |α|
|a1×a2||a3|






(18)

∆(A) =
1

3

√

|a1||a2||a3|





|a1| 0 0
0 |a2| 0
0 0 |a3|



 (19)

S(A) =
1

3

√

|α|







|a1| a1·a2

|a1|
a1·a3

|a1|
0 |a1×a2|

|a1|
(a1×a2)·(a1×a3)

|a1×a2||a1|
0 0 |α|

|a1×a2|






(20)

U(A) =







|a1| a1·a2

|a1|
a1·a3

|a1|
0 |a1×a2|

|a1|
(a1×a2)·(a1×a3)

|a1×a2||a1|
0 0 |α|

|a1×a2|






(21)

9The experiments also suggest that, while target-smoothness is necessary for a smooth optimal mesh, it
may not be sufficient.



The matrices above belong to the sets V, U , S, Q, and D defined in Section 3, but now on
M∗

3 .10

The factors of A = [a1, a2, a3] again have recognizable geometric meanings. Let ri = |ai|
and ψij , (i, j) ∈ {1, 2, 3}, be the included angle between ai and aj , and further assume that
for j 6= i, 0 < ψij < π so that the determinant of A will be positive. Let ν be the angle
between the vectors a1 × a2 and a1 × a3. Then one can show

cos ν =
cosψ23 − cosψ12 cosψ13

sinψ12 sinψ13

sin ν =
α

r1 r2 r3 sinψ12 sinψ13

Then the factorization above becomes

Λ(A) = |α|1/3

V (A) =
1

sinψ12

(

a1

r1
sinψ12,

a2

r2
− a1

r1
cosψ12,

a1

r1
× a2

r2

)

Q(A) = 3

√

r1 r2 r3
|α|





1 cosψ12 cosψ13

0 sinψ12 sinψ13 cos ν
0 0 sinψ13 sin ν





∆(A) =
1

3
√
r1 r2 r3





r1 0 0
0 r2 0
0 0 r3





S(A) =
1

3

√

|α|





r1 r2 cosψ12 r3 cosψ13

0 r2 sinψ12 r3 sinψ13 cos ν
0 0 r3 sinψ13 sin ν





U(A) =





r1 r2 cosψ12 r3 cosψ13

0 r2 sinψ12 r3 sinψ13 cos ν
0 0 r3 sinψ13 sin ν





As in the 2D case, the quantities Λ, V, Q, and ∆ can be seen to be related to size, orienta-
tion, skew, and aspect ratio, respectively.

Proposition 1 from Section 3 holds for d = 3 as well as d = 2, as can be seen from a
re-reading of the proof. Changing M ∗

2 to M∗
3 in the proof of Proposition 2 gives a valid

proof that the proposition also holds for d = 3. With minor modifications to the proofs of
Propositions 3, 4, and 5, one can show that these also hold for d = 3.

6 Target-matrix Construction using the 3×3 Factoriza-
tion

The main difference between this section and Section 4 is due to the different explicit ΛV Q∆
factorizations for 2×2 and 3×3 matrices. Thus, the emphasis in this section is on a descrip-
tion of the generic models for the new matrices in the factorization of 3×3 Jacobian matrices.
The models rely heavily on the expressions given at the end of the previous section. The
approach described in subsection 4.6 carries over immediately to the three-dimensional case.

6.1 The Size Factor (Λnew)k

The Size factor when d = 3 is related to the local volume of the map at a sample point. The
generic model is identical to that given in Section 4, as are the sources for the application

10The identity |α||a1| ≡ |(a1 × a2) × (a1 × a3)| is useful in showing that the lengths of the columns of Q

are equal.



data used to determine {fk}.

6.2 The 3 × 3 Orientation Factor (Vnew)k

To determine a new 3 × 3 orientation matrix requires two non-zero vectors {uk} {vk} at
each sample point, with |uk × vk| 6= 0. Then the generic model is the rotation

(Vnew)k =

[

uk

|uk|
,
|uk|2 vk − (uk · vk)uk

|uk| |uk × vk|
,

uk × vk

|uk × vk|

]

This will tend to make the optimal mesh align with the two vector fields such that the first
column of the Jacobian will align with u and the second column with v.

To align the second and third columns of the active Jacobian matrix with the pair of vectors
u and v, respectively, let

(Vnew)k =

[

uk × vk

|uk × vk|
,

uk

|uk|
,
|uk|2 vk − (uk · vk)uk

|uk| |uk × vk|

]

and to align the third and first columns of the active Jacobian matrix with the pair of vectors
u and v, respectively, let

(Vnew)k =

[ |uk|2 vk − (uk · vk)uk

|uk| |uk × vk|
,

uk × vk

|uk × vk|
,

uk

|uk|

]

Applications may have available, among other possibilities, the following data which can be
used to create useful pairs uk, vk: electric and magnetic fields, or eigenvectors of matrices.
In practice, the application may have access to only one vector field, so some ingenuity will
be required to find a suitable second field.

V3×3 is not a label-invariant quantity, so some effort is needed to properly correlate element
vertex numberings with the desired alignment.

6.3 The 3 × 3 Skew Factor (Qnew)k

The angles ψij refer to the angles between the vector triple consisting of the columns of
the Jacobian matrix at a sample point. A generic model for (Qnew)k could be based on
these angles, according to the Skew matrix factor of the previous section. In practice, few
applications will be able to supply these angles at all the sample points. More useful per-
haps is the case where Qnew is a constant which is based on the angles in the ideal element.
For example, in a hexahedral element, the face angles are all π/2 so that (Qnew)k = I at
all the sample points. The use of constant Skew matrices in the Target is appropriate if
a goal of the optimization is to create a mesh whose local tangents all include the ideal angle.

For a tetrahedral element, the face angles are all π/3, giving

(Qnew)k =
6
√

2















1 1
2

1
2

0
√

3
2

√
3

6

0 0
√

2
3















For a triangular wedge element, with face angles ψ12 = π
3 and ψ23 = ψ13 = π

2 ,

(Qnew)k =













1 1
2 0

0
√

3
2 0

0 0 1















For a square pyramid element of height h and base edge-length `, let

r =

√

1 +
1

2

(

`

h

)2

and

(Qnew)k = 3
√
r













1 0 `
2rh

0 1 `
2rh

0 0 1
r













6.4 Aspect Ratio Schemes (∆new)k

A generic model for ∆ requires that we be given three sets of positive numbers {(r1)k},
{(r2)k}, {(r3)k} at each sample point, representing relative lengths of the three tangent
vectors. The model is

∆new =











3

√

r2

1

r2 r3

0 0

0 3

√

r2

2

r3 r1

0

0 0 3

√

r2

3

r1 r2











For an isotropic mesh, we can use ∆new = I, otherwise, element labeling must be taken into
account in order for the results to be close to what is desired.

7 Example of Target Construction using ΛV Q∆

A fore-runner of the Target-matrix paradigm can be found in [10], in which a two-dimensional
structured mesh based on a global map is aligned with a given vector field. The optimization
is cast as a problem in the calculus of variations and the metric |A−1 −W−1|2 is used. The
target was calculated directly and did not use the factorization method given in the present
paper. However, the approach was similar to the construction of Vnew given here. Many of
the concepts in the present TMP were lacking in the original alignment paper, such as the
factorization, the extension to finite element meshes, the weighted Jacobian matrix T , the
concept of barrier metrics, and the use of Shape or Shape+Size metrics.

An example of the factorization method described in Sections 3 and 4 is given in this section.
The initial mesh consists of a quadrilateral ’paved’ planar region. The mesh is isotropic,
with good shape quality (see Figure 4). The difficulty with this mesh is that there are a
number of edges located near the domain corners which have relatively small edge-lengths.
The simulation code that used the mesh is explicit in time, so these small edge-lengths con-
trol the size of the time-step via the Courant condition. The goal, then, of the optimization
is to make the edge-lengths in the mesh more uniform so that a larger time-step can be taken.

The Target-matrix paradigm lends itself readily to this problem. To construct the set of
Target-matrices we begin with the initial mesh, calculate the Jacobian matrix Ainit at each
sample point. The sample points consist of the four corners of each quadrilateral in the mesh.
Apply the ΛV Q∆ factorization to obtain the factors Λinit, Vinit, Qinit, and ∆init. The factor
which most needs to be replaced with a ’new’ factor is Λinit because this is the primary
source of the non-uniformity in edge-length. To elaborate: Vinit controls only orientation,
while Qinit and ∆init are close to uniform since all the elements’ shapes are close to being
squares. Therefore, we replace Λinit with Λnew as given in Section 4.1. Since uniformity in
edge-length is desired, we choose fk ≡ 1 for all k, giving (Λnew)k = Λ̄. Although perhaps



not strictly necessary, we also replace Qinit and Dinit with Qnew = I and Dnew = I in order
to further improve Shape. The constructed Target-matrices are therefore

Wk = Λ̄ (Vinit)k

Because element orientation is not important in this problem, Vinit need not necessarily
be preserved; therefore, we can use an orientation-invariant local metric, which allows the
optimization to adjust orientation if necessary to achieve greater uniformity of edge-lengths.
We cannot use a Shape metric, however, because these are insensitive to Λ. Thus, the
best choice of local metric is to use a Size+Shape metric. This choice should preserve (or
slightly improve) the square shape of the quadrilaterals while equidistributing the Size (and
therefore, the edge-lengths).11 Because the initial mesh is non-inverted, we can use the
barrier form of the Size+Shape metric to guarantee the optimal mesh is also non-inverted.
The local quality metric used to produce the optimized mesh in Figure 4 was the following
barrier-based 2D Size+Shape metric:

µ(T ) =
|T |2 − 2

√

|T |2 + 2τ + 2

2τ

From the figure one sees that indeed the optimal mesh has more uniform edge-lengths. In
fact, the minimum edge-length in the optimized mesh is 1.7 times longer that the minimum
edge-length in the initial mesh, thus permitting the simulation code to increase the time-step
by the same factor.

The assumptions that went into the design of this optimization and Target construction
method are that (1) the initial paved mesh is non-inverted (and thus a barrier-metric can
be used), (2) the elements are quadrilaterals (so that Qnew = I is appropriate), and (3) the
elements are isotropic so that Vinit need not be replaced and so that ∆new = I is appro-
priate. These assumptions are usually reasonable when the initial mesh is obtained via a
paving algorithm. Obviously, if these assumptions are violated, we would need to re-think
the Target construction. For example, if the paved mesh consisted of triangular elements,
a different Qnew is needed. Or, if the mesh is not isotropic, then perhaps a different ∆new

and Vnew would be needed.

It is noted that there is some flexibility in the Target-construction algorithm for this par-
ticular problem. For example, replacing Vinit with Vnew = I might have worked just as well
since an orientation-invariant metric was used.

The most important point we wish to make is that in the Target-matrix approach, one can
generally use a very small set of local metrics (Shape, Shape+Size, Shape+Size+Orientation)
to address a wide variety of optimization goals. This is accomplished, not by creating new
metrics, but by creating new Target-matrices.

8 Target Construction for Particular Applications

As mentioned earlier, the factorization method of Target construction allows many combi-
nations of initial and new matrices. For example, the factorization W = V U gives rise to
four combinations: Vinit Uinit, Vinit Unew, Vnew Uinit, and Vnew Unew. The first is equiva-
lent to W = Ainit and the last is equivalent to W = Anew. There are actually even more
than four combinations here because either a new matrix can be created from a generic
model (like those described in Sections 4 and 6) or it can be created from a reference or
optimized mesh. Additionally, a generic model for a new matrix can often be created us-
ing difference types of application data such as scalars, vectors, matrices, or tensors. It is
thus difficult to fully enumerate all the possible combinations resulting in Targets within

11A pure Size metric would also equidistribute the edge-lengths, but would not necessarily preserve the
square shape of the elements.



TMP. Beyond that, there are three local quality metrics, Shape (Sh), Size+Shape (SS),
Size+Shape+Orientation (SSO), that can be associated with the different target combina-
tions, leading to a large number of possible optimization problems. It turns out that many
of the possible combinations are not particularly useful, so a better approach than direct
enumeration is needed to find useful combinations.

Instead of trying to enumerate all possible combinations in Target construction, we first list
(at an abstract level) the possible uses of each of the four factors in the ΛV Q∆ factorization,
beginning with the Size factor, Λ.

The distribution of Size values over the initial and the optimal mesh may be either homo-
geneous (constant) or heterogeneous (variable). Except for some special cases, most meshes
do not have a Size distribution which is exactly constant. However, if the Size is nearly
constant (i.e., the Size distribution has small standard deviation), we shall call the Size
homogeneous. Four uses of the size factor are identified below:

Sz1. Create a homogeneous Size-distribution (Λnew = constant),

Sz2. Preserve the Size-distribution of the initial mesh (Λinit),

Sz3. Create a particular heterogeneous Size-distribution based on application data (Λnew),
or

Sz4. Indifference to size distribution (Λinit or Λ = 1).

One is rarely indifferent to the Size distribution in a mesh. However, we list Sz4 anyway
because the TMP Shape metrics are invariant to Size, and experience has shown that use of
the Shape metric generally does not dramatically alter whatever Size distribution is found in
the initial mesh. There are certain applications in which we can take advantage of this sit-
uation which are described later in this section. Thus, Sz4 requires the Shape metric, while
Sz1-Sz3 can be used with either the Size-Shape metric or the Size-Shape-Orientation metric.

We can similarly list three uses of the Orientation factor:

Or1. Create a particular mesh Orientation (Vnew),

Or2. Preserve the Orientation of the initial mesh (Vinit), or

Or3. Indifference to Orientation (Vinit or V = I).

Indifference to orientation is quite common in applications of mesh optimization, particu-
larly if the mesh is isotropic. When one is not indifferent to orientation, one is generally
trying to align the mesh elements with some feature of the solution to a simulation. Many
times alignment can be achieved simply by conforming the mesh to the boundary of a
geometric domain. However, if an Orientation different than that implied by the geome-
try is wanted, mesh optimization using Vnew can play a useful role. Or1-Or2 require the
Size+Shape+Orientation metric, while Or3 can be used with either Shape or Size+Shape
metrics.

We list three uses of both the Skew and the Aspect Ratio factors.

Sk1. Create a constant Skew based on element type (Qnew = ideal),

Sk2. Preserve the Skew distribution of the initial mesh (Qinit), or

Sk3. Create a particular non-constant Skew distribution (Qnew).

Constant skew means that the Skew-matrix is constant over the set of sample points within
mesh elements of the same type. A hybrid mesh can have constant Skew, meaning that, for
example, all the sample points within triangular elements in the mesh use the Skew-matrix
in equation (21), while all the sample points within quadrilateral elements use Q = I.



Table 1: Potential Applications of the Target-matrix Paradigm

App Sz-Goal Data Or-Goal Data AR-Goal Data Metric
1 Sz4 initial Or3 initial AR1 ideal Sh
2 Sz4 initial Or3 initial AR2 initial Sh
3 Sz4 reference Or3 reference AR3 ∆(Aref ) D Sh

4 Sz1 constant Or3 initial AR1 ideal SS
5 Sz1 constant Or3 initial AR2 initial SS
6 Sz2 initial Or3 initial AR1 ideal SS
7 Sz2 initial Or3 initial AR2 initial SS
8 Sz3 curvature Or3 initial AR1 ideal SS
9 Sz3 error Or3 initial AR1 ideal SS
10 Sz3 λ Λ(Aref ) Or3 reference AR3 ∆(Aref ) D SS

11 Sz3 tensor Or1 tensor AR3 tensor SSO
12 Sz1 constant Or1 vector AR3 vector SSO
13 Sz2 initial Or2 initial AR2 initial SSO
14 Sz3 λ Λ(Aref ) Or1 R V (Aref ) AR2 ∆(Aref ) D SSO

The distribution of Aspect-ratio values over the initial and the optimal mesh may be either
isotropic (equal to unity) or anisotropic (variable). Except for some special cases, most
meshes do not have Aspect-ratio distributions that are exactly isotropic. However, if the
Aspect-ratios are nearly unity (i.e., the distribution of aspect ratios has a small standard
deviation from 1), we shall call the Aspect-ratio distribution isotropic. The three uses of
the Aspect Ratio factor are:

AR1. Create isotropic Aspect-ratio distribution (∆new = I).

AR2. Preserve the Aspect-ratio distribution of the initial mesh (∆init),

AR3. Create a particular anisotropic Aspect-ratio distribution (∆new).

One could also have uses in which one is indifferent to the aspect ratio factor, but this is
not included since none of our quality metrics is invariant to aspect ratio.

One can see from these use-lists that there are 4×3×3×3 = 108 combinations of uses of the
four factors. An explicit enumeration of the combinations isn’t particularly illuminating,
especially since many of them do not seem likely to occur in practice. Instead, we focus on
the known applications of mesh optimization, and relate them to the uses listed above in
order to illustrate that TMP, with its factorization method of creating Target-matrices has
the potential to address these applications. Table 1, along with the explanation below, sum-
marizes the map between the applications and the TMP matrix factors and local metrics.
Also shown is the likely source of the application data needed to construct the factors. For
most of the applications, the Skew-matrix use is Sk1 because in nearly every situation, the
skew corresponding to the ideal element type is either explicitly desired or at least makes a
good default in the absence of more detailed in formation. As a result, the Table does not
include a Skew column.

An explanation of the Table follows:

1. Shape Improvement.
Create isotropic elements whose Shape corresponds to the ideal isotropic element. The
initial mesh has some unacceptable Skew. The initial Aspect Ratios are not extreme
and the Size and Orientation is acceptable. The optimal mesh has less Skew and the
Aspect Ratios are more isotropic, while the initial Size and Orientation are more or
less preserved. Useful on most isotropic meshes.

2. Skew Improvement.
Create elements whose Skew corresponds to the ideal element. The initial mesh has
some unacceptable Skew and the Aspect Ratios, anisotropic or not, are acceptable.
The Size and Orientation in the initial mesh is acceptable. The optimal mesh has less



Skew, while Aspect Ratio, Size, and Orientation are more or less preserved. Useful on
most meshes, but especially if they are anisotropic.

3. Mesh Morphing - I.
Create a mesh whose local Shapes are similar to those of the reference mesh. This
Target and metric are appropriate if the global deformation involves significant changes
in domain Size (unknown), Orientation (unknown), and/or Aspect Ratio (known).
Local aspect ratios in the optimal mesh will be roughly the same as those of the
reference mesh when D, a known diagonal stretching of the domain, is the identity
matrix. If D is not the identity, then the local aspect ratios will roughly be those
of the reference mesh times the stretching factor. This Target is equivalent to Wk =
(Aref )k D (see subsection 4.6).

4. Shape Improvement with Size-Equidistribution.
Create equal-Sized elements whose Shape corresponds to the ideal isotropic element.
The initial mesh is not satisfactorily homogeneous and may contain unacceptable Skew
or mild anisotropy. The initial Orientation is acceptable. The optimal mesh is more
Size-homogeneous, with less Skew and anisotropy. Used to improve the Shape of
isotropic meshes and equidistribute the Size. This case includes the minimum edge
length example in the previous section.

5. Anisotropy-Preserving Skew Improvement & Size-Equidistribution.
The initial mesh has satisfactory Orientation and Anisotropy, but lacks sufficient Size-
homogeneity, as well as perhaps having local Skew defects. The optimal mesh is more
Size-homogeneous, has less Skew, and the initial mesh anisotropy is roughly preserved.
Useful on anisotropic meshes that are not Size-adapted (e.g., a 3D swept mesh).

6. Shape Improvement of Size-Heterogeneous Meshes.
Create elements whose Shape corresponds to the ideal isotropic element, while preserv-
ing the initial (heterogeneous) Size-distribution. The initial mesh has a heterogeneous
Size distribution which must be preserved, but whose Shapes need improvement to-
ward the ideal isotropic element; initial Orientation is acceptable. The optimal mesh
has the same heterogeneous Size distribution as the initial mesh, but has less skew
and the local aspect ratios are closer to unity. Used in shape improvement of isotropic
Size-adapted meshes.

7. Skew Improvement for Heterogeneous, Anisotropic Meshes.
The initial mesh has acceptable Size-heterogeneity, local anisotropy, and random Ori-
entation; the mesh contains significant local Skew. The optimal mesh has less Skew,
with Size and Aspect Ratios preserved. Similar to Application 2. except that Size is
explicitly preserved. Useful on Skewed initial meshes whose Size and Aspect ratios are
pre-adapted (e.g., a biased, structured mesh).

8. Surface Mesh Size-Adaptivity to Curvature.
The initial surface mesh is roughly homogeneous and isotropic. The optimal mesh has
a local Size which is proportional to the (absolute value of the) local surface curvature,
and has ideal isotropic Shape.

9. Size-based r-Adaptivity.
The initial mesh is roughly homogeneous and isotropic. The optimal mesh has a local
Size-distribution which is proportional to the magnitude of a local error estimate or
indicator, and has ideal isotropic Shape.

10. Mesh Morphing - II.
Same as Application 3 except that the domain deformation includes a known uniform
scaling factor λ. The Target is Wk = λ (Aref )k D, as described in subsection 4.6.

11. Tensor-based r-Adaptivity.
The initial mesh has a favorable topology so that the adaptive procedure will be
effective. The optimal mesh has a Size-distribution based on the determinant of a



symmetric, positive definite tensor, an Orientation based on the tensor eigenvectors,
and a Shape based on the ratio of the eigenvalues. Can be used in solution-adaptivity
or geometric-adaptivity.

12. Mesh Alignment.
The initial mesh is roughly homogeneous and isotropic, with unsatisfactory Orienta-
tion. The optimal mesh has Orientation and Aspect Ratio based on a given vector
field, has little Skew, and a constant Size-distribution. Boundary nodes should gen-
erally be allowed to move in order for this to work well. Used in applications such as
fusion and electromagnetics whose dependent variables are vector fields.

13. Skew-improvement of Aligned Mesh.
The initial mesh has acceptable Size, Orientation, and Aspect Ratio, but is unaccept-
ably Skewed. The optimal mesh is the same, with reduced Skew. Perhaps useful in
ALE rezone calculations or other applications where the initial mesh is aligned and
highly adapted to the solution.

14. Mesh Morphing - III.
Same as Application 10 except that the domain deformation includes a known constant
rotation factor R. The Target is equivalent to Wk = λR (Aref )k D, as described in
subsection 4.6.

For applications using the Sh or SS metrics, one can use V = I instead of Vinit, if this is
more convenient, because the metrics are invariant to Orientation.

The examples cited in the Table only illustrate the potential of the Target-matrix paradigm
to address a wide range of applications using only a few metrics, along with an automatic
Target construction scheme. Essentially, we’ve shown that the Target-matrix paradigm is
mainly about the creation of custom-built smoothers (optimizers) to address specific appli-
cations and which, being based on the same mathematical framework, permit rapid software
implementation. Application 1 has been already developed within the Mesquite code [13]
and has been a success. Exploratory papers have been published on applications 3 and 12.
Additional work on the fourteen applications in the form of numerical optimization of ap-
plication meshes remains in order to fully develop and illustrate their potential (this will be
the subject of future papers). We do not claim that the Table is an exhaustive enumeration
of all the potential applications of mesh optimization, but we believe that it may cover a
large part of the application space.

There are two situations in mesh optimization which are handled through the choice of
local metric instead of through the Target, namely, untangle an initially tangled mesh, or,
ensure that an initially untangled mesh remains untangled during optimization. In the first
case, we must use non-barrier metrics, while the second case calls for a barrier metric. This
comment applies to each of the applications in the Table.

The applications mentioned in the Table share a common feature, namely, that each sample
point is emphasized equally. This means that in the optimal mesh, the quality (as encoded
in the Target-matrix and local metric) is equidistributed. A future paper will discuss how
to vary the emphasis from one sample point to the next so that quality can be controlled
most in regions of the domain where it is most important.
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Figure 4: Initial (Top) and Optimized (Bottom) Paved Mesh


